Freshkills Park Blog

California landfill to power Marine Corps base

As a part of the US Navy’s initiative to receive 50% of its energy from alternative sources, California’s Miramar Marine Corps Air Station has signed a 15-year power supply agreement with Miramar Landfill, located adjacent to the base. The Navy and the City of San Diego will work in conjunction with New York-based Fortistar Methane Group to harvest enough methane  from the landfill–yielding about 3.2 MW–to power approximately 2,461 homes, nearly half of the air station’s energy needs. The project broke ground on July 14th and is set to be finished in December. The practices implemented at the Miramar base are to be used as a model for other military bases in the United States.

(via Waste Management World)

November 14, 2011 Posted by | FKP | , | Leave a comment

Jersey-Atlantic Wind Farm, Atlantic City, NJ

The 7.5 MW Jersey-Atlantic Wind Farm was the first wind power facility built in New Jersey and the first urban coastal wind farm in the United States.  It is located within the Atlantic County Utilities Authority (ACUA) Wastewater Treatment Facility site and has been in operation since December 2005. The five 380-foot turbines produce about 19 million kWh of electricity for the regional electric grid (about 2,500 homes worth) as well as for the Wastewater Treatment Plant.  Within the farm’s first five years of operation, it has already saved ACUA approximately $2.5 million in electricity fees.  The overall energy produced is estimated to save the energy equivalent of 24,000 barrels of crude oil per year.  The site has also become a tourist attraction; ACUA offers tours of the wind farm twice a week throughout the summer.

(via Clean Technica)

July 7, 2011 Posted by | FKP | , | Leave a comment

Two-in-one solar-wind turbine in prototype stage

Scientists at the University of Liverpool are developing a new wind turbine dubbed the “Heat Waver” that uses solar photovoltaic rotors to generate energy even when the wind isn’t blowing. The team, headed by Dr. Joe King, has built a prototype and is currently determining an installation site on which to test it. There are still many technical issues to iron out, but Dr. King has hope that his team can “transform the world’s renewable energy needs,” citing locations such as Morocco, Italy, Spain, and Australia as areas where the technology could potentially be highly beneficial.

(via Inhabitat)

May 25, 2011 Posted by | FKP | , | Leave a comment

Study examines wildlife-friendly biofuel crops

A two-year study at Michigan State University finds that growing native prairie grasses for biofuel harvesting is more beneficial to wildlife populations than monoculture stands of corn. The research team, headed by biologist Bruce Robertson, attempted to identify ecologically sound biofuel alternatives that are as cost-effective as corn, which is currently the primary feedstock for deriving ethanol in the US. The study showed that almost twice as many insects and birds were present amongst mixed prairie grasses than corn. Fields of only switchgrass yielded less wildlife presence than those of mixed prairie grasses, but still greater levels than tracts of pure corn. The study prompts questions about how often feedstock would need to be harvested and how disruptive harvest would be to wildlife on site, but it also gives early support the hybridization of strategies for addressing biodiversity and renewable energy generation.

(via EcoGeek)

May 20, 2011 Posted by | FKP | , , | Leave a comment

“Artificial leaves” mimic photosynthesis

Inspired by the natural process of photosynthesis, the Nocera group in the chemistry department at MIT claims to have successfully produced “artificial leaves,” small and inexpensive solar cells that can convert sunlight and water into energy.

About the shape of a poker card but thinner, the device is fashioned from silicon, electronics and catalysts, substances that accelerate chemical reactions that otherwise would not occur, or would run slowly. Placed in a single gallon of water in a bright sunlight, the device could produce enough electricity to supply a house in a developing country with electricity for a day, Nocera said. It does so by splitting water into its two components, hydrogen and oxygen. The hydrogen and oxygen gases would be stored in a fuel cell, which uses those two materials to produce electricity, located either on top of the house or beside it.

Unclear in this report is the volume of water required to generate power for that house, and its availability (and clarity) at  in the developing countries where the application might be ideal.  Still, a promising development.

(via Science Daily)

May 19, 2011 Posted by | FKP | | Leave a comment

Bird safety for wind farm development

According to the American Bird Conservancy (ABC), an estimated 100,000 to 440,000 birds die from collisions from wind turbines in the United States each year, and by 2030 that figure could easily surpass 1 million per year. Although ABC is in support of alternative energy choices such as wind power, they recommend passing regulations for the wind energy industry that take into consideration four measures of avian safety:

1. Siting.  When choosing the location for a wind farm, the site should be on previously disturbed land, such as agricultural or industrial areas. Sensitive bird habitat, such as areas along migratory paths, wetlands, and key nesting areas, should be avoided.

2. Operation and Construction Mitigation.  Efforts should be made to minimize the impacts of interconnection by burying transmission lines, or following the guidelines put forth by the Avian Power Line Interaction Committee if set above ground. Also, lighting should be used to deter night-flying migratory birds and construction-disturbed habitat should be restored.

3. Monitoring.  A monitoring system should be in place during both pre- and post-construction to assess the numbers of birds affected by the wind farm. Quantitative studies can be used to gauge and/or improve future decisions.

4. Compensation.  In order to mitigate the loss of bird habitat caused by wind farm development, suitable areas should be acquired and preserved for habitat conservation.

(via Grist)

May 6, 2011 Posted by | FKP | , | 2 Comments

Insight into bird vision could influence turbine design

A new study conducted by Dr. Graham Martin at Birmingham University investigates how bird sight effects collisions with human infrastructure, including wind turbines.

“When in flight, birds may turn their heads to look down, either with the binocular field or with the lateral part of an eye’s visual field,” says Martin. “Such behavior results in certain species being at least temporarily blind in the direction of travel.”

Martin notes that most avian vision prioritizes movement, not spatial detail, for hunting purposes.  High speeds required for flight also limit the amount of information that birds can process about their environment. Understanding these different ways of seeing could aid in the development of warning systems to limit collisions with renewable energy infrastructure.

(via Yale Environment 360 and Science Daily)

April 25, 2011 Posted by | FKP | , | Leave a comment

Massachusetts landfill to host large solar array

Residents of Canton, Massachusetts have approved plans to install a large solar array on a landfill that was capped and has remained undeveloped since the mid-1980s.  The array will consist of 24,000 3′ x 5′ panels that are expected to generate up to 5.6 MW of power by the time the project reaches completion in 2012.  If all goes to plan, the installation will be the largest solar field in New England.

Beyond making productive use of a former landfill site and satisfying the Massachusetts quota for renewable energy sourcing, the solar array will direct energy and monetary savings back to local residents.  According to the chairman of Canton’s Board of Selectmen, Victor Del Vecchio, the project could generate up to $70 million for the town from a combination of new revenue and energy savings.

(via Inhabitat)

April 18, 2011 Posted by | FKP | , | 1 Comment

Princeton to build largest US university solar field

Next year, Princeton University will begin construction of a 27-acre solar field, hosting16,500 photovoltaic panels, to partially power its New Jersey campus.  The array will be built on off-campus university-owned land and is projected to generate 8 million kilowatts of energy per year, or 5.5% of Princeton’s total electricity usage. The cost of the project will be funded in part by New Jersey’s Solar Renewable Energy Certificate program, the terms of which will require sale of energy credits—one for every 1,000 kilowatt hours—to utility companies through 2020.

(via Inhabitat)

April 13, 2011 Posted by | FKP | | Leave a comment

Japanese inventor turns plastics into fuel

Japanese inventor Akinori Ito has devised a way to revert post-consumer plastics, including the ubiquitous plastic bag, into petroleum-based fuel.  By heating up material in a small machine, capturing and cooling the vapors, and collecting the resulting liquid, Ito is able to turn two pounds of plastic into about a quart of oil, using a single kilowatt of power.  The system is still prohibitively expensive, but the technology has the potential to lessen demand for petroleum extraction and provide an impetus for keeping plastic out of the garbage stream.

(via CleanTechnica)

April 12, 2011 Posted by | FKP | , , | 1 Comment


Get every new post delivered to your Inbox.

Join 96 other followers